Process Control System Simulator System Description

Simulator Specification and Requirements

The Process Control System Simulator (PCSS) is designed to provide computer simulation of certain chemical agent disposal facility systems for the purpose of training and evaluating prospective control room operators for initial training and experienced operators for refresher training. The PCSS provides graphical control screens similar to those used in the actual control rooms at ANCDF, PBCDF, TOCDF, and UMCDF. The PCSS control screens are designed to allow the student to issue commands to control the simulated systems and to display the anticipated control system response to those commands.

The PCSS is designed to allow the operator to perform the necessary start-up, shutdown, and normal operating tasks in accordance with standing operating procedures. The PCSS is designed to replicate upset conditions to occur to allow the student to be trained and evaluated on response to certain system and/or component failures. The PCSS is designed to provide visual and audible alarm indications similar to those in the control room. The PCSS is designed to operate in a group situation where each operator is part of a team controlling the simulation, or in stand-alone situations where each operator has their own simulation to control.

The PCSS is designed to allow the instructor and/or students to configure the status of the simulated systems to predefined initial conditions. The PCSS is designed to allow the instructor and/or students to save a snapshot of a simulation scenario for future retrieval. The PCSS is designed to automatically take snapshots at pre-defined intervals for the purpose of backtracking and replaying simulator scenarios.

General Description

The PCSS consists of a series of personal computer workstations connected via Ethernet. Each workstation consists of two personal computers, one for the Left CRT (B) and one for the Right CRT (A), to emulate the operator workstations in the actual control room. Both computers are capable of displaying graphical control screens to allow the user to control the operation of the simulated plant systems.

In a classroom setting, one of the workstations is designated as the instructor’s workstation. The instructor’s workstation is designed to allow one of its CRT displays to be projected onto a large screen to facilitate focused group discussions. The instructor’s workstation is also designed to allow the instructor to insert upset conditions on the students’ workstations without their prior knowledge.

In a remote setting, such as a work area adjacent to the control room, a PCSS workstation can be configured to operate without being attached to an instructor station. This allows a CRO to practice system evolutions independently as time allows during their regular shift.

Scope of Simulation

The focus of the simulation is on the furnace systems (LIC, DFS, and MPF) and their pollution abatement systems, the munitions demilitarization building heating, ventilation, and air conditioning system, and the electrical distribution system. The computer models for these systems are based on plant systems design information, actual plant control system ladder logic and control screens and actual plant process data captured during operations.

Certain support utility systems are also simulated. These include:

· Bulk Chemical Storage

· Central Decontamination System

· Spent Decontamination Collection

· Agent Collection

· Process Water

· Instrument Air

· Plant Air

· Fuel Gas

· Control Room HVAC

· Hydraulics

· ACAMS

Hardware Requirements

Each PCSS workstation consists of two personal computers. The typical configuration for each personal computer is:

· ATX Mini-Tower Case

· 48X IDE CDROM

· 1.44 Mbyte Floppy Drive

· 100 Mbyte Zip Drive

· 20.5 Gbyte 7200 rpm Ultra ATA/66 Hard Drive

· 2 x PC800 128 Mbyte RIMM (256 Mbyte total)

· Windows 2000™ Professional Operating System

· 21” monitor capable of 1600 x 1200 resolution at 85 Hz

· Intel™ (Hawaii) RAMBUS Motherboard with integrated LAN and audio

· 10/100 BaseT Ethernet Network Interface Card

· 320-Watt power supply

· Intel™ 733 MHz Pentium III™ CPU

· Mouse-Trak™ Personal Trackball

· Linksys™ 2-port KVM switch

· ISOBAR Ultra™ Power Strip

· APC UPS 600 battery backup

· 683 Genovation™ Control Pad

The simulator classroom should be designed to be able to support the electrical and HVAC requirements of the PCSS workstations and personnel. A typical classroom should have a dedicated three-ton air conditioning unit and at least four dedicated 20-amp circuits.

Software Requirements

In addition to the Windows 2000™ Professional Operating System, the PCSS requires the following third-party software:

· Motif Instructor Station and SimExec™ by GSE Systems, Inc.

· DataViews™ by GE Fanuc

· Datafocus Nutcracker™ X-Server

In addition to all of the above, a developer’s workstation also requires:

· Microsoft Visual C++ Version 5

· DEC FORTRAN

· DataViews™ Editor by GE Fanuc

· Datafocus Nutcracker™ developer’s tools

· SimSuite Power™ by GSE Systems, Inc.

Simulation Code Overview

The simulation code is made up of three major components:

· Instructor Station

· Simulation Executive

· Graphical User Interface

The Motif Instructor Station (M/IS) was written by GSE Systems, Inc. and is based on X-Windows™ technology. This technology is used to allow programs that are being executed on one computer to display windows on the monitors of other computers via the X-Server. For a typical workstation, the M/IS software is executed on the ‘A’ computer. The student’s workstation ‘A’ computer displays M/IS control windows on the workstation’s ‘A’ computer, the workstation’s ‘B’ computer, and the instructor’s workstation’s ‘B’ computer. The instructor and/or student can insert instructor commands for this workstation’s simulator from any of these three windows.

The Simulation Executive is made up of software modules that are compiled and linked using the SimExec™ tools from GSE Systems. These modules consist of a combination of FORTRAN and C language program segments that simulate the dynamic response of the plant process systems and the logic response of the solid-state control panels and the PLC-based control system.

The Graphical User Interface software is based on the GE Fanuc DataViews™ product line. The developer creates operator control screens using the plant-specific user graphics and control icons. When the simulator is running, M/IS communication tasks get data from the Simulation Executive to update the status indications on the operator control screens. Other M/IS communication tasks receive operator commands via the operator control screens and send these commands to the Simulation Executive. Each computer at the student workstation runs its own copy of the graphics package and M/IS communications tasks so that each CRT can display graphic screens independently.

The instructor’s workstation computers can display graphic control screens that communicate with the instructor’s workstation Simulation Executive. The instructor’s workstation graphic screens cannot communicate with the Simulation Executive running on a student’s workstation. When the classroom is set up for group (team) training, the graphic screens on the students’ workstations are configured to communicate with the Simulation Executive running on the instructor’s workstation.

Motif Instructor Station (M/IS)

The instructor and the students can control the status of the simulator via the M/IS control/status window. The various controls that are available are described below.

Simulator Initial Conditions

M/IS supports up to 200 ICs and identifies each with an integer. When the RESET command is invoked, the simulator reads a previously saved Initial Condition snapshot from the hard drive and initializes the Simulation Executive to that configuration. Examples of ICs include “Ready to Feed Agent to the LIC” and “PAS Normal, Ready to Start Furnaces”.

The Initial Condition Summary (ICS) display shows information about each initial condition, including critical parameter values and an instructor comment of up to 64 characters. Selecting any line on the summary invokes the Initial Condition Popup (ICP). The ICP displays information about the selected IC and allows the user to reset to it. It also provides capabilities for defining ICs.

Run/Freeze
The basic Run/Freeze feature lets the user suspend and resume simulation. When the user selects freeze mode, the simulator completes all simulation frames for the current second before suspending. This ensures that all simulation models are in a stable condition.

The current simulator mode is always clearly indicated in the M/IS status region. The indicator automatically highlights whenever the simulator is not in run mode. A dedicated soft key can be used to toggle the simulator between freeze and run modes. The label dynamically updates to show its current function.

Snapshot
The snapshot feature records the current simulator status to an initial condition snapshot. Using a menu-driven utility program, the instructor can password-protect individual or groups of ICs.

It is possible to pre-select an initial condition for the next snapshot command. A status indicator shows the current snapshot IC. When selected, a menu of unprotected ICs lets the user immediately snapshot to any free initial condition. The indicator highlights if the snapshot IC is other than IC0, the default snapshot IC.

Backtrack
The Backtrack feature allows the user to return to a previous point of the simulation scenario. M/IS periodically records a snapshot of the simulator status to a circular file of configurable length at a selectable interval. During backtrack mode, the user can preview the available backtrack conditions on the simulator. After choosing a backtrack condition, the user can reset to it or use it as a starting point for replay.

The Backtrack Condition Summary (BCS) display is like the Initial Condition Summary with a line of information displaying critical parameters and a time stamp for each condition. The display is organized with the most recent condition first. During backtrack mode, the user can preview backtrack conditions on the control panels before selecting one for reset or replay. By default, backtrack mode initially previews the most recent backtrack condition.

Replay
The Replay feature lets the instructor review a scenario with students. While the simulator replays a portion of the training scenario, the user can point out relevant panel indications. M/IS implements this feature by constantly recording the necessary instructor and operator inputs. During replay mode, recorded inputs are passed to the simulation models in the proper time sequence.

Malfunctions
The Malfunction Index and Malfunction Summary pull-down menus are available to allow the user to insert upset conditions. Up to 120 concurrent malfunctions may be inserted at one time. The mouse may be used to select the malfunction popup for display and to select targets within the popup. Time delays, malfunction severity ramping, and immediate activation are available to implement and control malfunctions.

The Malfunction Summary Display will automatically organize and present the pertinent information for the malfunctions, which may be in active or pending status at any given time. In addition to the date, time of day, and current exercise (simulation) time and status, this display will show for each entered malfunction:

· Malfunction Tag Number ‑ a unique alphanumeric label, which includes the system designation.

· Malfunction type - each malfunction is either variable or Boolean (i.e., has an associated severity or not).

· Activation Timer for inactive malfunctions, which gives the time remaining until activation (delay times up to 8 hours).

· Deletion Timer for active malfunctions, the timer shows how long the malfunction will be active.

· Current Severity Factor, which indicates the malfunction severity as seen by the simulator models.

· Final Severity Factor, which indicates the malfunction severity when ramping is completed.

· Ramp Time, which indicates the time remaining until the malfunction is ramped to its final severity.

· Malfunction Status, which can be Pending (not triggered), Counting (triggered but not yet active), or Active.

· An abbreviated Malfunction Description

Remote Functions
The instructor station provides a remote function feature such that the instructor can display and modify simulated functions that are not operable from the simulator control room panels. Access to remote functions will be provided in three ways:

· Remote Function Index pages - tabular list displays organized by system, which provide a description, units, and desired and current values for each remote function. Each list item is selectable and invokes a menu of control options for the selected remote function.

· Remote Function Summary page - a tabular list display similar to the Remote Function Index page, which lists all remote functions modified since the last IC reset.

· Expert mode - remote functions may also be modified directly from any display using keyboard entry of an expert mode command.

Code Maintenance

The source code for the M/IS instructor station is licensed from GSE Systems, inc. The majority of the code was written using the ‘C’ programming language with extensive use of X-Windows, Motif, and DataViews runtime library calls. The M/IS can be broken down into three major sections: offline maintenance utilities, startup and shutdown scripts, and runtime communications tasks with X-Window/widget control and command interpretation.

M/IS Offline Maintenance Utilities

The major M/IS maintenance offline utilities are: Generate Monitored Parameter Database, Tableau Compile, Generate Diagram Database, Generate Remote Function Database, and Generate Malfunction Database. The database generation utilities use Microsoft ODBC to access the main simulation database (Simulation.mdb) to obtain the necessary data to generate the M/IS runtime databases.

The Monitored Parameter Database generator builds a local database that contains all of the variables used in the simulation source code. The database records include the shared memory global partition and offset, data type, and point descriptions. This database allows the M/IS runtime routines to access data from the Simulation Executive.

The Tableau Compiler uses the DataViews screen editor file and the monitored parameter database to generate two files that are necessary to process the graphics control screens at runtime. The Tableau Compiler links the display objects to their associated Simulation Executive parameter, links the control targets to their associated Simulation Executive parameter, and generates an optimized version of the graphics display for use during runtime.

The Diagram Database generator builds a local database of all of the local graphics screens that can be displayed during runtime. This command interpreter uses this database for efficient parsing of operator commands for accessing the graphic displays.

The Remote Function Database generator uses the monitored parameter database to create a local database that contains the information for displaying and controlling the remote function parameters that are used by the Simulation Executive.

The Malfunction Database generator uses the monitored parameter database to create a local database that contains the information for displaying and controlling the malfunction parameters that are used by the Simulation Executive.

Startup and Shutdown Scripts

The majority of the startup and shutdown scripts are written in either MS-DOS or Perl. These scripts are available to the simulator user via icons on the Windows Desktop. There is a set of scripts for the Simulation Executive computer (B side) and another set of scripts for the M/IS computer (A side).

The startup scripts are used at runtime to configure the simulators according to which mode of operation is selected and which computer is being configured. The startup scripts will determine the appropriate shared memory partition and host computer for retrieving Simulation Executive data while either in the stand-alone mode or the group mode. The startup scripts will determine whether or not the computer should display a simulator control/status window, what size the window should be, and on what other computers the window should be displayed.

The shutdown scripts are used to ensure a complete cessation of the simulation software. The shutdown scripts terminate the standalone executables that were launched at startup that control the communication between the M/IS and the Simulation Executive, they de-allocate the shared memory partitions, and they close the runtime database files.

Runtime Tasks

The major runtime tasks include the primary and secondary display managers, the communication server, and the command interpreter.

The primary display manager displays the simulation control/status window on all of the appropriate computers as determined by the startup scripts. The primary display manager also controls the graphics display for the M/IS computer. The secondary display manager controls the graphics display for any client computer. The client computer is the Simulation Executive computer in stand-alone mode, or all of the student workstations in group mode.

The communication server controls access to the shared memory partitions. The M/IS issues requests to the communication server via the communication manager routines. The simulation executive issues requests to the communications server via the cyclic processor routines.

The command interpreter receives commands from the either the control/status window or the graphics screens. The command interpreter parses the user commands and issues the necessary prompts to either the display manager or the communication manager depending on the type of command.

Simulation Executive

The major components of the Simulation Executive include the master simulation database, the simulation math models and logic code, the linker/loader (LLD), the master synchronization task (MST), and the interactive symbolic debugger (ISD).

Master Simulation Database

The master simulation database is a Microsoft Access database that contains records that define each of the global memory partitions, the variables and constants within the global memory partitions, the control modules, the segment modules, and all subroutines. The Data Base Manager (DBM) utility allows the developer to add, modify, and delete items, and to generate reports for the master simulator database.

The master simulation database keeps track of two simulation configurations. The primary configuration is the one used to generate the training simulation executive. This configuration is referred to as ODS. The other configuration is used for performing changes to program segments. This configuration is referred to as Load.

In addition to tracking variables and program segments, the developer must use DBM to extract program segments from ODS, to compile the source code (either FORTRAN or C), and to merge the program segments back to the ODS.

Simulation Math Models and Logic Code

The simulation math models and logic code consists of the algorithms used to simulate the actual plant equipment and control system responses. There are about 500 files consisting of over 350,000 lines of code in a typical chemical demilitarization process control system simulator.

The source code for the simulation math models and logic can be divided into three primary categories. These are dynamics, logics, and subroutines.

The dynamics program segments are used to generate a mathematical representation of the physical processes and equipment. Most of the equations within the dynamics program segments follow top-down structured programming techniques. However, due to the interconnectivity of all of the rooms within the facilities, the heating, ventilation, and air conditioning system uses a GSE product called TOPMERET to provide a simultaneous solution for air pressures and flows associated the various rooms that are part of the cascade ventilation system.

The following is an example of a typical equation used within a dynamics program that follows the top-down structured programming techniques:

cc

c

c equation: d014

c

c tank water mass and level

c

cc01400 continue

c

c

 pwm101 = pwm101 + pwtime * (pwftanki + pwf06 -

 1 pwftanko - pwftotal)

c

 pwl101 = pwklmcov * pwm101

c

Where:

· pwm101 is the mass of water in PRW-TANK-101 in lbm.

· pwtime is the period between program segment calls for process water (0.25 seconds).

· pwftanki is the flow into the tank in lbm/sec.

· pwf06 is the net process water recirculation flow back to the tank in lbm/sec.

· pwftanko is the tank overflow to the area sump in lbm/sec.

· pwftotal is the combined flow to all of the users of process water in lbm/sec.

· pwl101 is the water level in the tank in feet.

· pwklmcov is conversion from mass to feet based on the geometry of the tank and the density of the water.

The logics program segments are used to generate a mathematical representation of the hardwired and computerized control systems associated with the plant equipment and processes. The following is an example of a typical equation used within a logics program:

c

c interlock

 pw:i29hs12_s1 = .not. pw:x29la04_s1 ! lsll-04

 1 .and. .not. pw:x29pa10_s1 ! psll-010

Where:

· pw:i29hs12_s1 is the PLC ladder logic start interlock for PRW-PUMP-101.

· pw:x29la04_s1 is the PLC ladder logic alarm indicating 29-LSLL-04.

· pw:x29pa10_s1 is the PLC ladder logic alarm indicating 29-PSLL-010.

The following is an example of a typical call to a subroutine from within either a dynamics or logics program:

c

 call msaov (l2:114xv456, ! solenoid

 1 l2vp764xv456, ! valve position

 2 2.0, ! valve diameter, inches

 3 iap, ! air pressure, psig

 4 yy:false, ! fail closed

 5 l2kdt, ! program time step, sec

 6 l2:114zs456, ! fully open byte

 7 l2:114zs456b) ! fully closed byte

The following is an example of a typical subroutine that is called from within either a dynamics or logics program:

 logical*1 solenoid

 real*4 position

 real*4 size

 real*4 pressure

 logical*1 mode

 real*4 deltat

 logical*1 open

 logical*1 close

 real*4 krate

 real*4 kpress

c calculate increment/decrement rate of valve position

 krate = deltat/size ! 1 in/sec assumed

c calculate air pressure criteria for valve failure

 kpress = pressure/size ! pressure criteria

c open or close valve based on failure mode, solenoid status,

c and air pressure

 if (mode) then ! fail open

 if ((solenoid).and.(kpress.gt.2.0)) then

 position = position - krate

 else

 position = position + krate

 end if

 else ! fail close

 if ((solenoid).and.(kpress.gt.2.0)) then

 position = position + krate

 else

 position = position - krate

 end if

 end if

c limit valve position 0.0 to 1.0 and set fully open/fully closed

c bytes

 position = amin1(position,1.0)

 position = amax1(position,0.0)

 close = (position .le. 0.0)

 open = (position .ge. 1.0)

 return

 end

Linker/Loader (LLD)
The LLD utility generates the real-time executable file. LLD accepts commands from a text script that designate the sequence and frequency for calling all of the dynamics and logics files and determines what global partitions get initialized at runtime.

LLD accesses the master simulation database to ensure that all of the compiled object code files are up to date with their respective source code files. LLD then links all of the simulation dynamics and logics object code with system libraries and creates the real-time executable file, which is run by the master synchronization task.
Master Synchronization Task

In a typical chemical demilitarization process control system simulator, the MST is executed via interrupts from the computer’s operating system at a rate of 16 Hz. This allows the MST to control the real-time executive by dividing each one-second interval into 16 frames. The dynamics and logics programs are executed during a given frame only if they were designated to be in that frame by LLD.

When the simulation first executes, MST calls all of the programs that are designated to be in frame 1. When all of the programs are executed, MST suspends itself. One-sixteenth of a second from the beginning of the previous frame, the computer’s operating system generates an interrupt that re-awakens MST. Then MST calls all of the programs that are designated to be in frame 2. This continues for all 16 frames and then repeats continuously while the simulation is executing.

Interactive Symbolic Debugger

The ISD provides the developer with a continuously updated window to allow real-time monitoring of internal source code variables. ISD allows the developer to read from and write to the global memory partitions that are being accessed by the real-time executive as well as the M/IS communications server. ISD also allows the developer to start and stop the simulation and to execute (step) the simulation for short durations, given in number of frames.

Graphical User Interface

The Graphical User Interface software is based on the GE Fanuc DataViews™ product line. The developer creates operator control screens using the plant-specific user graphics and control icons using the windows-based DV-Draw editor. DV-Draw is a point-and-click drawing editor that allows the developer to build simulated control screens using sub-drawings for standardized icons as well as the typical graphics package features. A typical chemical demilitarization process control system simulator has over 500 sub-drawings defined and nearly 500 main control screens.

Once the developer has drawn the main control screen, he/she adds Simulation Executive variable names to the data source for the drawing. Once the variable has been added to the data source, the developer can connect that variable to the dynamics feature of on object on the drawing. Depending on the icon or sub-drawing for the object, the object will change states based on the information stored at the memory location of the variable as determined by the Simulation Executive.

Once the drawing is complete and all of the necessary variables are tied to the display objects and control objects, the developer runs Tableau Compile to create the runtime display files. While the simulator is running, the Simulation Executive receives command from the screen and updates status information to the screen via the M/IS communication server.

History of the PCSS

The PCSS was developed by General Physics Corporation (GP) under the initial Chemical Demilitarization Training Facility (CDTF) contract that was awarded in 1989. GP utilized over 60,000 labor hours to develop and test the PCSS prior to the government’s acceptance as ready for training in May 1992.

The original PCSS math models and logic routines ran on an Encore 32/67 computer system, the main computer platform for the PCSS. This type of computer had been used since 1986 for training simulation. This mini-computer was connected to a PLC-3 to allow the simulation to interface to the CDTF control room, using the Advisor PC and the Data Highway II to communicate with the students.

The original PCSS was based on the TOCDF configuration and simulated the following systems:

· DFS and DFS PAS

· MPF and MPF PAS

· LIC #1 and LIC #1 PAS

· DUN and DUN PAS

· MDB HVAC – Supply air handling units, exhaust filtration units, and second floor rooms only

· Electrical Distribution and Emergency Diesel Generators

· Spent Decontamination Collection

· Central Decontamination

· Process Water

The students operated the simulated systems using the Advisor PC control screens, control keyboards and trackballs that are part of the control room operator’s consoles. The instructor had a dedicated terminal to control the actions of the simulator and to insert system upsets.

In February 1997, the government directed GP to change the PCSS platform from mini-computer/PLC-3/Advisor to a personal computer (PC) platform. The PC-based PCSS was fully tested and ready for training by August 1998.

As the demilitarization program and operator training evolved, refresher training became more important. The government directed GP to install PC-based simulators at each of the four baseline incineration facilities to support refresher training and the training of operators hired due to attrition. GP installed a PCSS at TOCDF in November of 2000, at ANCDF in October of 2001, at UMCDF in November of 2001 and at PBCDF in February of 2002.

PAGE
1

